2806 independent reflections

 $R_{\rm int} = 0.021$

2092 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Chlorobenzylidene)-4-methoxyaniline

Xiao-Yan Ren,^a Yu-Feng Ding^b and Fang-Fang Jian^a*

^aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and ^bThe 7th Middle School, Weifang 261061, People's Republic of China

Correspondence e-mail: ffjian2008@163.com

Received 27 July 2008; accepted 13 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.089; data-to-parameter ratio = 18.2.

The title compound, C₁₄H₁₂ClNO, was prepared by the reaction of 4-methoxyaniline and 4-chlorobenzaldehyde in ethanol at 367 K. The molecule is almost planar, with a dihedral angle between the two benzene rings of 9.1 (2) $^{\circ}$ and an r.m.s. deviation from the mean plane through all non-H atoms in the molecule of 0.167 Å.

Related literature

For applications of Schiff base compounds, see: Deschamps et al. (2003); Rozwadowski et al. (1999); Tarafder et al. (2000). For a related structure, see: Jian et al. (2006).

Experimental

Crystal data

C₁₄H₁₂CINO V = 1230.9 (3) Å³ $M_r = 245.70$ Z = 4Orthorhombic, Pna21 Mo $K\alpha$ radiation a = 6.1055 (9) Å $\mu = 0.29 \text{ mm}^{-1}$ b = 7.3392 (11) Å T = 293 (2) K c = 27.469 (4) Å $0.20 \times 0.15 \times 0.11 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 7232 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.088$	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
S = 1.01	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
2806 reflections	Absolute structure: Flack (1983)
154 concentrations	1450 Existed a parameters
154 parameters	1450 Friedel pairs
1 restraint	Flack parameter: -0.01 (7)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2527).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem., 42, 7366-7368. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.

Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809-2817.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.

supplementary materials

Acta Cryst. (2008). E64, o1793 [doi:10.1107/S1600536808026111]

N-(4-Chlorobenzylidene)-4-methoxyaniline

X.-Y. Ren, Y.-F. Ding and F.-F. Jian

Comment

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian *et al.*, 2006), and have antimicrobial (Tarafder *et al.*, 2000) and anticancer applications (Deschamps *et al.*, 2003). Additional recent interest in Schiff base compounds comes from their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski *et al.*, 1999). We report here the synthesis and structure of the title Schiff base compound, I, Fig. 1.

The molecule is almost planar with a dihedral angle between the C2···C7 and C9···C13 benzene rings of 9.1 (2)° and an rms deviation from the meanplane through all non-hydrogen atoms in the molecule of 0.167. The C=N bond distance (1.255 (2) Å) is in reasonable agreement with that observed in a similar compound (Jian *et al.*, 2006).

Experimental

A mixture of 4-methoxyaniline 2.46 g (0.02 mol) and 4-chlorobenzaldehyde 2.8 g (0.02 mol) was stirred in ethanol (50 mL) at 367 K for 2 h, to give the title compound (3.9 g, yield 81%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, $U_{iso}=1.2U_{eq}(C)$ for aromatic and 0.96Å, $U_{iso}=1.5U_{eq}(C)$ for CH₃ atoms.

Figures

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

N-(4-Chlorobenzylidene)-4-methoxyaniline

Crystal data $C_{14}H_{12}CINO$ $M_r = 245.70$ Orthorhombic, $Pna2_1$ Hall symbol: P 2c -2n a = 6.1055 (9) Å b = 7.3392 (11) Å

 $F_{000} = 512$ $D_x = 1.326 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2092 reflections $\theta = 2.9-28.3^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$

c = 27.469 (4) Å	T = 293 (2) K
V = 1230.9 (3) Å ³	Block, yellow
Z = 4	$0.20\times0.15\times0.11~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2092 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
Monochromator: graphite	$\theta_{\text{max}} = 28.3^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.9^{\circ}$
ϕ and ω scans	$h = -8 \rightarrow 4$
Absorption correction: none	$k = -9 \rightarrow 9$
7232 measured reflections	$l = -36 \rightarrow 33$
2806 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2 + 0.0836P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
2806 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
154 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1450 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.01 (7)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.77772 (12)	0.00540 (10)	0.23599 (3)	0.0862 (2)

01	-0.0611 (2)	-0.01368 (19)	0.64134 (5)	0.0560 (4)
N1	0.2457 (3)	0.0122 (2)	0.45058 (6)	0.0463 (4)
C1	-0.2589 (4)	0.0731 (4)	0.65469 (10)	0.0750 (7)
H1B	-0.2859	0.0539	0.6887	0.112*
H1C	-0.3775	0.0230	0.6361	0.112*
H1D	-0.2475	0.2014	0.6483	0.112*
C2	0.0048 (3)	-0.0027 (2)	0.59389 (7)	0.0421 (4)
C3	0.1994 (3)	-0.0915 (2)	0.58341 (7)	0.0446 (4)
НЗА	0.2739	-0.1522	0.6081	0.053*
C4	0.2838 (3)	-0.0909 (3)	0.53699 (7)	0.0456 (4)
H4A	0.4144	-0.1513	0.5305	0.055*
C5	0.1737 (3)	0.0005 (2)	0.49944 (7)	0.0395 (4)
C6	-0.0225 (3)	0.0856 (3)	0.51062 (6)	0.0436 (4)
H6A	-0.0996	0.1442	0.4860	0.052*
C7	-0.1074 (3)	0.0862 (2)	0.55747 (7)	0.0451 (4)
H7A	-0.2384	0.1458	0.5642	0.054*
C8	0.4424 (3)	-0.0157 (2)	0.43961 (7)	0.0475 (5)
H8A	0.5407	-0.0439	0.4644	0.057*
C9	0.5235 (3)	-0.0060 (2)	0.38958 (8)	0.0456 (4)
C10	0.3951 (4)	0.0631 (3)	0.35228 (7)	0.0537 (5)
H10A	0.2559	0.1075	0.3592	0.064*
C11	0.4712 (4)	0.0666 (3)	0.30525 (8)	0.0595 (6)
H11A	0.3842	0.1133	0.2804	0.071*
C12	0.6790 (4)	0.0000 (3)	0.29508 (8)	0.0572 (6)
C13	0.8091 (3)	-0.0666 (3)	0.33165 (8)	0.0579 (5)
H13A	0.9480	-0.1115	0.3247	0.069*
C14	0.7321 (3)	-0.0665 (3)	0.37880 (7)	0.0534 (5)
H14A	0.8221	-0.1079	0.4038	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0943 (5)	0.1126 (5)	0.0517 (3)	-0.0069 (4)	0.0194 (4)	-0.0127 (3)
01	0.0570 (9)	0.0702 (10)	0.0409 (7)	0.0069 (7)	0.0025 (7)	-0.0003 (6)
N1	0.0453 (10)	0.0487 (10)	0.0448 (10)	0.0027 (7)	-0.0005 (7)	-0.0006 (7)
C1	0.0614 (15)	0.104 (2)	0.0598 (14)	0.0089 (13)	0.0097 (11)	-0.0055 (13)
C2	0.0414 (9)	0.0408 (9)	0.0440 (10)	-0.0062 (7)	-0.0034 (9)	-0.0031 (8)
C3	0.0429 (9)	0.0450 (10)	0.0459 (11)	0.0016 (8)	-0.0062 (8)	0.0036 (8)
C4	0.0396 (10)	0.0457 (10)	0.0516 (11)	0.0073 (8)	-0.0017 (8)	0.0024 (8)
C5	0.0408 (10)	0.0361 (9)	0.0417 (9)	-0.0022 (7)	-0.0009 (7)	-0.0013 (7)
C6	0.0409 (10)	0.0411 (10)	0.0487 (11)	0.0043 (8)	-0.0080 (8)	0.0020 (8)
C7	0.0397 (10)	0.0444 (9)	0.0511 (11)	0.0048 (8)	-0.0023 (8)	-0.0014 (8)
C8	0.0453 (11)	0.0527 (11)	0.0446 (10)	-0.0005 (9)	-0.0036 (9)	-0.0018 (9)
C9	0.0435 (10)	0.0449 (10)	0.0484 (10)	-0.0041 (8)	-0.0011 (9)	-0.0025 (8)
C10	0.0479 (11)	0.0593 (12)	0.0540 (12)	0.0032 (10)	0.0019 (9)	-0.0013 (9)
C11	0.0598 (14)	0.0688 (14)	0.0498 (12)	0.0060 (11)	-0.0051 (10)	0.0013 (9)
C12	0.0660 (14)	0.0581 (13)	0.0476 (12)	-0.0085 (11)	0.0123 (10)	-0.0092 (10)
C13	0.0473 (12)	0.0646 (13)	0.0617 (14)	0.0032 (10)	0.0059 (10)	-0.0055 (11)

supplementary materials

C14	0.0473 (12)	0.0620 (13)	0.0508 (12)	0.0043 (9)	-0.0002 (9)	0.0018 (9)	
Geometric param	neters (Å, °)						
Cl1—C12		1.732 (2)	С6—	·C7	1.3	87 (2)	
O1—C2		1.366 (2)	С6—	H6A	0.9	0.9300	
O1—C1		1.414 (3)	С7—	H7A	0.9	300	
N1—C8		1.255 (2)	C8—	·C9	1.4	63 (3)	
N1—C5		1.415 (3)	C8—	H8A	0.9	300	
C1—H1B		0.9600	С9—	·C14	1.3	81 (3)	
C1—H1C		0.9600	С9—	·C10	1.3	86 (3)	
C1—H1D		0.9600	C10-	C11	1.3	73 (3)	
С2—С7		1.377 (3)	C10-	-H10A	0.9	300	
C2—C3		1.386 (2)	C11-	C12	1.3	88 (3)	
C3—C4		1.375 (2)	C11-	-H11A	0.9	300	
С3—НЗА		0.9300	C12-	C13	1.3	71 (3)	
C4—C5		1.402 (3)	C13-	C14	1.3	78 (3)	
C4—H4A		0.9300	C13–	-H13A	0.9	300	
C5—C6		1.386 (3)	C14-	-H14A	0.9	300	
C2—O1—C1		118.19 (17)	C2—	С7—Н7А	120).4	
C8—N1—C5		121.00 (17)	С6—	С7—Н7А	120).4	
O1—C1—H1B		109.5	N1—	-C8C9	122	2.78 (18)	
O1—C1—H1C		109.5	N1—	-C8—H8A	118	3.6	
H1B—C1—H1C		109.5	С9—	C8—H8A	118	3.6	
O1—C1—H1D		109.5	C14-	C9C10	118	3.7 (2)	
H1B—C1—H1D		109.5	C14-	—С9—С8	119	9.87 (19)	
H1C-C1-H1D		109.5	C10-	С9С8	12	1.40 (17)	
O1—C2—C7		125.07 (16)	C11-	-С10-С9	120).7 (2)	
O1—C2—C3		115.02 (17)	C11–	C10H10A	119	9.6	
С7—С2—С3		119.91 (18)	С9—	C10—H10A	119	9.6	
C4—C3—C2		120.82 (17)	C10-	C11C12	119	9.5 (2)	
C4—C3—H3A		119.6	C10-	C11H11A	120).3	
С2—С3—Н3А		119.6	C12-	C11H11A	120).3	
C3—C4—C5		120.27 (17)	C13-	C12C11	120).5 (2)	
C3—C4—H4A		119.9	C13-	C12Cl1	119	9.55 (17)	
C5—C4—H4A		119.9	C11-	C12Cl1	119	9.92 (19)	
C6—C5—C4		117.86 (18)	C12-	C13C14	119	9.42 (18)	
C6-C5-N1		116.83 (16)	C12-	C13H13A	120).3	
C4—C5—N1		125.31 (16)	C14-	C13H13A	120).3	
C5—C6—C7		122.00 (17)	C13–	—С14—С9	12	1.1 (2)	
С5—С6—Н6А		119.0	C13-	C14H14A	119	9.5	
С7—С6—Н6А		119.0	С9—	C14—H14A	119	9.5	
С2—С7—С6		119.11 (17)					

Fig. 1